Robust face recognition with structural binary gradient patterns
نویسندگان
چکیده
This paper presents a computationally efficient yet powerful binary framework for robust facial representation based on image gradients. It is termed as structural binary gradient patterns (SBGP). To discover underlying local structures in the gradient domain, we compute image gradients from multiple directions and simplify them into a set of binary strings. The SBGP is derived from certain types of these binary strings that have meaningful local structures and are capable of resembling fundamental textural information. They detect micro orientational edges and possess strong orientation and locality capabilities, thus enabling great discrimination. The SBGP also benefits from the advantages of the gradient domain and exhibits profound robustness against illumination variations. The binary strategy realized by pixel correlations in a small neighborhood substantially simplifies the computational complexity and achieves extremely efficient processing with only 0.0032s in Matlab for a typical face image. Furthermore, the discrimination power of the SBGP can be enhanced on a set of defined orientational image gradient magnitudes, further enforcing locality and orientation. Results of extensive experiments on various benchmark databases illustrate significant improvements of the SBGP based representations over the existing state-of-the-art local descriptors in the terms of discrimination, robustness and complexity. Codes for the SBGP methods will be available at http://www.eee.manchester.ac.uk/research/groups/sisp/software/.
منابع مشابه
Binary Gradient Correlation Patterns for Robust Face Recognition
This paper presents a computationally efficient yet powerful binary framework for robust facial representation based on image gradients. It is termed as binary gradient correlation patterns (BGCP). To discover underlying local structures in the gradient domain, BGCP computes image gradients from multiple directions and simplifies them into a set of binary strings. Certain types of these binary ...
متن کاملFacial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملFace Recognition Using Gradient Derivative Local Binary Patterns
The emerging notion of the smart city has paying attention in the research field of urban development. One of the challenges of the smart city is how to understand the data collected by the sensor and make a decision. The face detection plays a key role in our social communication in turning over the identity and emotions. The human ability to recognize faces is notable but the face is a comple...
متن کاملFace Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude
In this paper, we propose a new face recognition approach based on local binary patterns (LBP). The proposed approach has the following novel contributions. (i) As compared with the conventional LBP, anisotropic structures of the facial images can be captured effectively by the proposed approach using elongated neighborhood distribution, which is called the elongated LBP (ELBP). (ii) A new feat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 68 شماره
صفحات -
تاریخ انتشار 2017